Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 57
Filtre
1.
biorxiv; 2024.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2024.02.28.582613

Résumé

Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.


Sujets)
COVID-19
2.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.10.25.513804

Résumé

Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection as compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins.


Sujets)
Infections à coronavirus , COVID-19
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.06.23.22276820

Résumé

BackgroundA fraction of COVID-19 patients develops severe disease requiring hospitalization, while the majority, including high-risk individuals, experience mild symptoms. Severe disease has been associated with higher levels of antibodies and inflammatory cytokines, but the association has often resulted from comparison of patients with diverse demographics and comorbidity status. This study examined patients with defined demographic risk factors for severe COVID-19 who developed mild vs. severe COVID-19. MethodsThis study evaluated hospitalized vs. ambulatory COVID-19 patients in the James J. Peters VA Medical Center, Bronx, NY. This cohort presented demographic risk factors for severe COVID-19: median age of 63, >80% male, >85% black and/or Hispanic. Sera were collected four to 243 days after symptom onset and evaluated for binding and functional antibodies as well as 48 cytokines/chemokines. FindingsAmbulatory and hospitalized patients showed no difference in SARS-CoV-2-specific antibody levels and functions. However, a strong correlation between anti-S2 antibody levels and the other antibody parameters was observed in hospitalized but not in ambulatory cases. Cytokine/chemokine levels also revealed differences, with notably higher IL-27 levels in hospitalized patients. Hence, among the older, mostly male patients studied here, SARS-CoV-2-specific antibody levels and functions did not distinguish hospitalized and ambulatory cases but a discordance in S2-specific antibody responses was noted in ambulatory patients, and elevated levels of specific cytokines were maintained in convalescent sera of hospitalized cases. InterpretationThe data indicate that antibodies against the relatively conserved S2 spike subunit and immunoregulatory cytokines such as IL-27 are potential immune determinants of COVID-19. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSPrevious studies demonstrated that high levels of SARS-CoV-2 spike binding antibodies and neutralizing antibodies were associated with COVID-19 disease severity. However, the comparisons were often made without considering demographics and comorbidities. Correlation was similarly shown between severe disease and marked elevation of several plasma cytokines but again, most analyses of cytokine responses to COVID-19 were conducted by comparison of patient cohorts with diverse demographic characteristics and risk factors. Added value of this studyWe evaluated here a comprehensive profile of SARS-CoV-2-specific antibodies (total Ig, isotypes/subtypes, Fab- and Fc-mediated functions) and a panel of 48 cytokines and chemokines in serum samples from a cohort of SARS-CoV-2-infected patients with demographic risk factors for severe COVID-19: 81% were male, 79% were >50 years old (median of 63), and 85% belonged to US minority groups (black and/or Hispanic). Comparison of hospitalized vs. ambulatory patients within this cohort revealed two features that differed between severe vs. mild COVID-19 cases: a discordant Ab response to the S2 subunit of the viral spike protein in the mild cases and an elevated response of specific cytokines and chemokines, notably IL-27, in the severe cases. Implications of all the available evidenceData from the study identified key immunologic markers for severe vs. mild COVID-19 that provide a path forward for investigations of their roles in minimizing or augmenting disease severity.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
4.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-745648.v1

Résumé

Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK, γδ T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of αβ CD4 + and CD8 + T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1β, IFN-γ, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.17.21263758

Résumé

Summary Background Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It’s being developed in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. Methods This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy adults aged 18-59 years, non-pregnant and negative for SARS-CoV-2 antibodies were eligible. Participants were block randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 µg±CpG1018 (a toll-like receptor 9 agonist), 3 µg±CpG1018, 10 µg, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov ( NCT04764422 ). Findings Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enrolled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5·7% to 17·1% among vaccine groups and was 2·9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation’s immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122·23 IU/mL (1 µg, 95% CI 86·40-172·91) to 474·35 IU/mL (10 µg, 95% CI 320·90-701·19), with 93·9% to 100% of vaccine groups attaining a ≥4-fold increase over baseline. Interpretation NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg and 3 µg+CpG1018 formulations advanced to phase 2. Funding National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA)


Sujets)
Infections à coronavirus , Encéphalomyélite aigüe disséminée , COVID-19 , Douleur musculosquelettique , Maladie de Newcastle
6.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3919680

Résumé

A novel clinical assay for the detection and quantitation of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was adapted from an in-house, research-based enzyme-linked immunosorbent assay (ELISA). Development and validation were performed under regulatory guidelines, and the test obtained emergency use authorization (EUA) from the New York State Department of Health (NYSDOH) and the Food and Drug Administration (FDA). The Mount Sinai COVID-19 antibody assay is an orthogonal, quantitative direct ELISA test which detects antibodies reactive to the receptor binding domain (RBD) and the spike protein of the novel SARS-CoV-2. The assay is performed on 96-well plates coated with either SARS-CoV-2 recombinant RBD or spike proteins. The test is divided into two stages, a qualitative screening assay against RBD and a quantitative assay against the full-length spike protein. The test uses pooled high titer serum as a reference standard. Negative pre-COVID-19 and positive post-COVID-19, PCR-confirmed specimens were incorporated in each ELISA test run, and the assays were performed independently at two different locations. The Mount Sinai COVID-19 serology performed with high sensitivity and specificity, 92.5% (95% CI: 0.785 – 0.980) and 100% (CI: 0.939 – 1.000) respectively. Between-run precision was assessed with a single run repeated over 22 days; and within-run precision was assessed with 10 replicates per day over 22 days. Both were within reported acceptance criteria (CV ≤20%). This population-based study reveals the applicability and reliability of this novel orthogonal COVID-19 serology test for the detection and quantitation of antibodies against SARS-CoV-2, allowing a broad set of clinical applications, including the broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different population subsets.Funding: This work was partially supported by the JPB foundation, the Open Philanthropy Project (#2020-215611) and other philanthropic donations.Declaration of Interests: Mount Sinai has licensed serological assays to commercial entities and has filed for patent protection for serological assays. The Icahn School of Medicine at Mount Sinai has filed patent applications relating to the COVID-19 serological assay (“Serology Assay”) and NDV-based SARS-CoV-2 vaccines which list Florian Krammer (“Serology Assay”, vaccines), Daniel Stadlbauer (“Serology Assay”), Damodara Rao Mendu (“Serology Assay”), and Carlos Cordon-Cardo (“Serology Assay”) as co-inventors. The foundational “Serology Assay” intellectual property (IP) was licensed by the Icahn School of Medicine at Mount Sinai to commercial entities including Kantaro Biosciences, a company in which Mount Sinai has a financial interest. Florian Krammer consulted for Merck, Curevac, and Pfizer in the past (before 2020) and is currently consulting for Pfizer, Seqirus, and Avimex. The Krammer laboratory is collaborating with Pfizer on animal models of SARS-CoV-2.Patient Informed Consent Statement: Informed consent was obtained from all individuals included in this study.


Sujets)
Infections à coronavirus , Syndrome respiratoire aigu sévère , COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.01.21262715

Résumé

Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients.


Sujets)
COVID-19 , Ossification du ligament longitudinal postérieur , Inflammation , Maladies de la plèvre
8.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.08.31.458247

Résumé

The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the postboost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitopespecific responses, with higher RBD- and NTD-specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
9.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-802084.v1

Résumé

Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients.


Sujets)
COVID-19
10.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.21.21262399

Résumé

Although pregnancy poses a greater risk for severe COVID-19, the underlying immunological changes associated with SARS-CoV-2 infection during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in pregnant and non-pregnant women during acute and convalescent COVID-19 up to 258 days post symptom onset, quantifying 217 immunological parameters. Additionally, matched maternal and cord blood were collected from COVID-19 convalescent pregnancies. Although serological responses to SARS-CoV-2 were similar in pregnant and non-pregnant women, cellular immune analyses revealed marked differences in key NK cell and unconventional T cell responses during COVID-19 in pregnant women. While NK cells, {gamma}{delta} T cells and MAIT cells displayed pre-activated phenotypes in healthy pregnant women when compared to non-pregnant age-matched women, activation profiles of these pre-activated NK and unconventional T cells remained unchanged at acute and convalescent COVID-19 in pregnancy. Conversely, activation dynamics of NK and unconventional T cells were prototypical in non-pregnant women in COVID-19. In contrast, activation of {beta} CD4+ and CD8+ T cells, T follicular helper cells and antibody-secreting cells was similar in pregnant and non-pregnant women with COVID-19. Elevated levels of IL-1{beta}, IFN-{gamma}, IL-8, IL-18 and IL-33 were also found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, our study provides the first comprehensive map of longitudinal immunological responses to SARS-CoV-2 infection in pregnant women, providing insights into patient management and education during COVID-19 pregnancy.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
11.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.08.05.455212

Résumé

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against coronavirus disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild type SARS-CoV-2 and from variants B.1.1.7, B.1.351 and P.1 for their immunogenicity and protective effect in vivo against challenge with wild type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7 vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild type SARS-CoV-2 in a mouse model. Author SummaryThe emergence of variants of SARS-CoV-2 has led to an urgency to study whether vaccines will lead to cross-protection against these variants. Here, we demonstrate that vaccination with spike proteins of various variants leads to cross-neutralizing responses, as well as protection in a mouse model against wild type SARS-CoV-2.


Sujets)
Infections à coronavirus , COVID-19
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.21.21260961

Résumé

Highly efficacious vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed.1 However, the emergence of viral variants that are more infectious than the earlier SARS-CoV-2 strains is concerning.2 Several of these viral variants have the potential to partially escape neutralizing antibody responses warranting continued immune-monitoring. Here, we tested a number of currently circulating viral variants of concern/interest, including B.1.526 (Iota), B.1.1.7+E484K (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and C.37 (Lambda) in neutralization assays using a panel of post-mRNA vaccination sera. The assays were performed with authentic SARS-CoV-2 clinical isolates in an assay that mimics physiological conditions. We found only small decreases in neutralization against B.1.526 and an intermediate phenotype for B.617.2. The reduction was stronger against a sub-variant of C.37, followed by B.1.351 and B.1.1.7+E484K. C.37 is currently circulating in parts of Latin America3 and was detected in Germany, the US and Israel. Of note, reduction in a binding assay that also included P.1, B.1.617.1 (Kappa) and A.23.1 was negligible. Taken together, these findings suggest that mRNA SARS-CoV-2 vaccines may remain effective against these viral variants of concern/interest and that spike binding antibody tests likely retain specificity in the face of evolving SARS-CoV-2 diversity.

13.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-678247.v1

Résumé

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484 and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and the variants of concern, including B.1.1.7 (alpha), P.1 (gamma) and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to wildtype (WT) SARS-CoV-2 do possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern.


Sujets)
Syndrome respiratoire aigu sévère
14.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.07.08.451649

Résumé

Structural characterization of infection- and vaccination-elicited antibodies in complex with antigen provides insight into the evolutionary arms race between the host and the pathogen and informs rational vaccine immunogen design. We isolated a germline-like monoclonal antibody (mAb) from plasmablasts activated upon mRNA vaccination against SARS-CoV-2 and determined its structure in complex with the spike glycoprotein by cryo-EM. We show that the mAb engages a previously uncharacterized neutralizing epitope on the spike N-terminal domain (NTD). The high-resolution structure reveals details of the intermolecular interactions and shows that the mAb inserts its HCDR3 loop into a hydrophobic NTD cavity previously shown to bind a heme metabolite, biliverdin. We demonstrate direct competition with biliverdin and that - because of the conserved nature of the epitope - the mAb maintains binding to viral variants B.1.1.7 and B.1.351. Our study illustrates the feasibility of targeting the NTD to achieve broad neutralization against SARS-CoV-2 variants.

15.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.07.06.451301

Résumé

Rapid development of coronavirus disease 2019 (COVID-19) vaccines and expedited authorization for use and approval has been proven beneficial to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread and given hope in this desperate situation. It is believed that sufficient supplies and equitable allocations of vaccines are necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here we provide evidence that the NDV vector expressing an optimized spike antigen (NDV-HXP-S), upgraded from our previous construct, is a versatile vaccine that can be used live or inactivated to induce strong antibody responses and to also cross-neutralize variants of concern. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters. It is noteworthy that vaccine lots produced by existing egg-based influenza virus vaccine manufacturers in Vietnam, Thailand and Brazil exhibited excellent immunogenicity and efficacy in hamsters, demonstrating that NDV-HXP-S vaccines can be quickly produced at large-scale to meet global demands.


Sujets)
Infections à coronavirus , COVID-19
16.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-676469.v1

Résumé

Rapid development of coronavirus disease 2019 (COVID-19) vaccines and expedited authorization for use and approval has been proven beneficial to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread and given hope in this desperate situation. It is believed that sufficient supplies and equitable allocations of vaccines are necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here we provide evidence that the NDV vector expressing an optimized spike antigen (NDV-HXP-S), upgraded from our previous construct, is a versatile vaccine that can be used live or inactivated to induce strong antibody responses and to also cross-neutralize variants of concern. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters. It is noteworthy that vaccine lots produced by existing egg-based influenza virus vaccine manufacturers in Vietnam, Thailand and Brazil exhibited excellent immunogenicity and efficacy in hamsters, demonstrating that NDV-HXP-S vaccines can be quickly produced at large-scale to meet global demands.


Sujets)
Infections à coronavirus , COVID-19
17.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256972

Résumé

Background: Mass vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is on-going in the United States with vaccines approved for emergency use by the FDA. Each vaccine can induce spike-specific antibodies (Abs) with virus-neutralizing activities; however, the Fc-mediated Ab activities have received little attention. Moreover, while plasma/serum Abs are commonly studied, scant information is available about Abs in the respiratory mucosa, the site of SARS-CoV-2 transmission. Methods: Plasma and saliva were collected from mRNA vaccine recipients and convalescent coronavirus disease 2019 (COVID-19) patients. Antigen-specific total Ig and Ig isotypes were measured. In addition to virus neutralization, Fc-mediated activities were investigated, including antibody-dependent cellular phagocytosis (ADCP) and complement deposition. Results: Similar to infection, vaccination stimulated spike-specific Ab responses detected in plasma and saliva, with IgG1 as the dominant isotype. Interestingly, vaccination produced greater IgG2, IgG3, and IgG4 responses and higher ratios of (IgG1+IgG3)/(IgG2+IgG4) than infection. Moreover, while plasma neutralization and ADCP potencies were comparable in vaccinated and convalescent individuals, vaccine-induced plasma Abs elicited stronger complement binding and activation. Conclusion: Compared with natural infection, mRNA vaccines induced a greater array of IgG subtypes against spike in saliva and plasma. The vaccine-induced Abs were also more potent in mediating complement activation.


Sujets)
Infections à coronavirus , COVID-19 , Convalescence
18.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3832979

Résumé

The robust protection conferred by SARS-CoV-2 mRNA vaccines represents a critical milestone in the COVID-19 vaccine development. However, the emergence of variants has inspired renewed concern related to the protective efficacy of currently approved vaccines, which lose neutralizing potency against some variants. However, emerging data suggest that antibody functions, beyond neutralization, may contribute to protection from disease. Thus, here we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOC). While neutralizing antibody responses are affected by VOCs, antibodies generated after infection exhibited robust binding to VOCs but compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies bound robustly to VOCs and continued interacting with Fc-receptors and mediated antibody effector functions. These data point to a previously unappreciated resilience in the mRNA vaccine-induced humoral immune response that may continue to provide protection from SARS-CoV-2 VOCs independent of neutralization.Trial Registration: This work used samples from the phase 1, dose-escalation, open-labelclinical trial designed to determine the safety, reactogenicity, and immunogenicity of mRNA-1273 (mRNA-1273 ClinicalTrials.gov number, NCT04283461 mRNA-1273 study; DOI: 10.1056/NEJMoa2022483).Funding: We acknowledge support from the Ragon Institute of MGH, MIT, and Harvard, the Massachusetts Consortium on Pathogen Readiness (MassCPR), the NIH (3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, U19AI42790-01, 1U01CA260476 – 01, CIVIC75N93019C00052), the Gates Foundation Global Health Vaccine Accelerator Platform funding (OPP1146996 and INV-001650), Translational Research Institute for Space Health through NASA Cooperative Agreement (NNX16AO69A), and the Musk Foundation. This work used samples from the phase 1 mRNA-1273 study (NCT04283461; DOI: 10.1056/NEJMoa2022483). The mRNA-1273 phase 1 study was sponsored and primarily funded by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD. This trial has been funded in part with federal funds from the NIAID under grant awards UM1AI148373, to Kaiser Washington; UM1AI148576, UM1AI148684, and NIH P51 OD011132, to Emory University; NIH AID AI149644, and contract award HHSN272201500002C, to Emmes. Funding for the manufacture of mRNA-1273 phase 1 material was provided by the Coalition for Epidemic Preparedness Innovation.Declaration of Interest: G.A. is a founder of Seromyx Systems Inc. A.C. is employee of Moderna Inc. D.D., P.M., A.S.M, and E.R.M. are employees of Space Exploration Technologies Corp. All other authors have declared that no conflict of interest exists.Ethical Approval: The MGH IRB reviewed the ethics protocol for secondary use under record 2020P004042 and the project was deemed Not Human Research.


Sujets)
COVID-19 , Maladies transmissibles
19.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.04.05.438547

Résumé

After first emerging in December 2019 in China, severe acute respiratory syndrome 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized but supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the whole spike of SARS-CoV-2. In this study, we have generated mouse monoclonal antibodies (mAbs) against different epitopes on the RBD and assessed binding and neutralization against authentic SARS-CoV-2. We have demonstrated that antibodies with neutralizing activity, but not non-neutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the mAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variants in vitro.


Sujets)
Insuffisance respiratoire
20.
ssrn; 2021.
Preprint Dans Anglais | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3821080

Résumé

Recently approved vaccines have shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, and how boosting alters immunity to wildtype and newly emerging strains, remains incompletely understood. Here we profiled the humoral immune response in a cohort of non-human primates immunized with a recombinant SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a one or two-dose regimen with a saponin-based adjuvant Matrix-M™. While antigen dose had minimal effects, boosting significantly altered the humoral response, driving unique vaccine-induced antibody fingerprints. Differences in antibody effector functions and neutralization were associated with protection in the upper and lower respiratory tract, pointing to compartment-specific determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies targeting emerging SARS-CoV-2 variants. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.Funding: This work was funded by Operation Warp Speed. We thank Colin Mann and Kathryn Hastie for production of Spike antigens. We thank Nancy Zimmerman, Mark and Lisa Schwartz, an anonymous donor (financial support), Terry and Susan Ragon, and the SAMANA Kay MGH Research Scholars award for their support. We acknowledge support from the Ragon Institute of MGH, MIT and Harvard, the Massachusetts Consortium on Pathogen Readiness (Mass CPR), the NIH (3R37AI080289-11S1, R01AI146785, U19AI42790-01, U19AI135995-02, U19AI42790-01, 1U01CA260476 – 01, CIVIC75N93019C00052), National Science Foundation Graduate Research Fellowship Grant No. #1745302, the Gates foundation Global Health Vaccine Accelerator Platform funding (OPP1146996 and INV-001650), and the Musk Foundation.Conflict of Interest: NP, MGX, JHT, BZ, SM, AMG, MJM, ADP, GG, GS, and LE are current or past employees of Novavax, Inc. and have stock options in the company. GA is the founder of Serom Yx Systems, Inc. AZ is a current employee of Moderna, Inc. but conducted this work before employment.Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. YG, RC, MJG, CA, KMP, CL, DY, KB, MEM, JL, DM, CM, SS, FA, FK, EOS, DL, and MBF declare no competing interest.Ethical Approval: The work was conducted in accordance with a protocol approved by Texas Biomed’s Institutional Animal Care and Use Committee. All subjects signed informed consent and safety oversight was monitored by a data monitoring board.


Sujets)
Dystrophie myotonique , Polypose adénomateuse colique
SÉLECTION CITATIONS
Détails de la recherche